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For the systematic development of feedback flow controllers, a numerical model that
captures the dynamic behaviour of the flow field to be controlled is required. This
poses a particular challenge for flow fields where the dynamic behaviour is nonlinear,
and the governing equations cannot easily be solved in closed form. This has led
to many versions of low-dimensional modelling techniques, which we extend in this
work to represent better the impact of actuation on the flow. For the benchmark
problem of a circular cylinder wake in the laminar regime, we introduce a novel
extension to the proper orthogonal decomposition (POD) procedure that facilitates
mode construction from transient data sets. We demonstrate the performance of this
new decomposition by applying it to a data set from the development of the limit
cycle oscillation of a circular cylinder wake simulation as well as an ensemble of
transient forced simulation results. The modes obtained from this decomposition,
which we refer to as the double POD (DPOD) method, correctly track the changes
of the spatial modes both during the evolution of the limit cycle and when forcing
is applied by transverse translation of the cylinder. The mode amplitudes, which are
obtained by projecting the original data sets onto the truncated DPOD modes, can
be used to construct a dynamic mathematical model of the wake that accurately
predicts the wake flow dynamics within the lock-in region at low forcing amplitudes.
This low-dimensional model, derived using nonlinear artificial neural network based
system identification methods, is robust and accurate and can be used to simulate
the dynamic behaviour of the wake flow. We demonstrate this ability not just for
unforced and open-loop forced data, but also for a feedback-controlled simulation
that leads to a 90 % reduction in lift fluctuations. This indicates the possibility of
constructing accurate dynamic low-dimensional models for feedback control by using
unforced and transient forced data only.

1. Introduction
An important area of work on flow control involves the phenomenon of vortex

shedding behind bluff bodies. When the flow separates from a bluff body, the
resulting wake exhibits vortex shedding, which leads to a sharp rise in drag, noise and
fluid-induced vibration (Gillies 1998). The increased drag is detrimental for vehicle
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performance, while vibrations create problems in applications as diverse as stationary
ocean platforms, bridges, or automobile antennae. In other applications, the ability
to control the wake of a bluff body could be used to increase mixing, e.g. to enhance
heat transfer or combustion (von Kármán 1954; Park, Ladd & Hendricks 1993;
Roussopoulos 1993).

The flow around these objects of relatively simple geometry can be of astounding
complexity, even at modest Reynolds numbers. A prime example of this behaviour
is the circular cylinder wake at laminar Reynolds numbers of the order of Re = 100.
For a comprehensive review of the flow physics, see Williamson (1996). While the von
Kármán vortex street is easily observed and visualized, understanding and modelling
its dynamics, with the eventual goal of controlling it, are daunting tasks. Ever since
von Kármán (1911) first described the formation of the vortices in the wake flow,
the vortex street has served as a benchmark for dynamical models that describe its
behaviour.

Initially, the motivation for the development of these models was to gain physical
understanding. One of the simplest models that emerged early was the Ginzburg–
Landau equation, which captures the nonlinear dynamics of a wake-like flow (Park
et al. 1993). Chomaz, Huerre & Redekopp (1988) and Huerre & Monkewitz (1990)
used this equation to demonstrate that the von Kármán vortex street is indeed due to
the amplification of a global instability mode, which in turn requires a sufficiently large
area of absolute instability in the wake. The first versions of the Ginzburg–Landau
equations model only the downstream development of the vortex street, but not the
cross-stream flow features. Later extensions developed by Noack, Ohle & Eckelmann
(1991), Albarede & Monkewitz (1992), Roussopoulos & Monkewitz (1996) as well as
Papangelou (1992) modelled the transverse flow features as well with variants of the
Ginzburg–Landau equations.

More recently, the focus of reduced order model development has shifted from
the desire to obtain a physical understanding of the flow field to use of the
model for feedback flow control. In this context, a low-dimensional model that
is computationally efficient is crucial for several reasons. For the development of
control algorithms, a model is required to aid in their derivation. State-of-the-art
control theory can only derive controllers for problems with relatively few degrees
of freedom. Once a control algorithm has been developed, for the implementation
of the control algorithm in an experiment or application, it is necessary to solve
the control equations in real-time. This can currently be achieved only for relatively
low-complexity controllers.

To achieve the necessary reduction in the order of the modelling problem,
proper orthogonal decomposition (POD), also referred to as the Karhunen–Loève
decomposition, has been successfully used as a computational tool for reducing the
order of the fluid dynamic system. For example, in the case of the two-dimensional
circular cylinder wake, a direct numerical solution of sufficient spatial resolution
requires of the order of tens of thousands of grid points. Multiplying these by the
number of flow variables computed at each grid point leads to a dynamical system
with upwards of 105 degrees of freedom, a challenging problem, given current control
design methods. POD can be used to reduce the order of this problem to a few spatial
modes and their corresponding mode amplitudes, which is a size of problem that is
within reach of current controls tools.

Low-dimensional model development based on POD decomposition is a three-
step process. In the first step, data on the flow field to be modelled is gathered
using either numerical or experimental methods. Selection of suitable data sets is a
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crucial step in model building and will be discussed in detail below. In the second
step, spatial modes and their mode amplitudes are derived from the flow-field data.
The most often used approach is the ‘method of snapshots’ developed by Sirovich
(1987). Various methods of deciding how to precondition or cluster the data have
been suggested in the literature and are discussed below. In conjunction with the
spatial POD modes, the associated mode amplitudes may be calculated using an
inner product or least-squares-fit approach.

To arrive at a low-dimensional model, the mode set is truncated, usually based on
an energy criterion (the eigenvalues in the Karhunen–Loève system represent twice
the modal kinetic energy if POD is applied to the velocity field). The third and
final step is the development of a model for the remaining mode amplitudes. This is
commonly achieved by a Galerkin projection on the Navier–Stokes equations, which
yields a system of equations that describes the evolution of the mode amplitudes over
time. This set of equations can then be used to develop feedback-control algorithms
in a systematic fashion, or to test the performance of control algorithms against this
model. All three steps of model development described above involve assumptions
and potential problems, with many different solution proposed in the literature, which
we will discuss in the following.

Analysing the aforementioned steps in more detail, a number of workers recognized
that POD in its original form is not well suited to describing transient data sets, i.e.
data sets that are neither stationary nor periodic in time. In the following, a summary
of previous work to remedy the underlying problems is given, with a focus on work
aimed at model development. In the first step, selection of the data to be used for
modelling, traditionally a small number of snapshots from the time periodic state
of the unforced flow have been used. If POD is performed on this limit-cycle data,
the resulting spatial modes will represent only the flow field during the limit-cycle
oscillations. As was recognized early (e.g. Graham, Peraire & Tang 1999a, b), during
transient flow behaviour, the ability to describe the instantaneous flow state suffered
greatly. Such transients can be simply due to the initial development of the limit cycle
in a flow field started from rest, a change of flow condition (e.g. Reynolds number) or,
more importantly in the flow-control context, can be induced by open- or closed-loop
forcing.

Consequently, more than one flow condition is required in order to successfully
model a flow field which undergoes transient development. Noack et al. (2003)
proposed to use the steady solution of the flow as an additional data point in order
to achieve a model with correct transient dynamics. Siegel et al. (2005) demonstrate
that the inclusion of transient forced data can be used to construct a mode basis that
also includes forcing effects on the flow field. Bergmann, Cordier & Brancher (2005)
employ a chirp signal to force the flow into different states thus enlarging the data
basis used for model construction. Afanasiev & Hinze (2001) use POD in an iterative
fashion to keep the model valid as the flow changes.

Another problem pertains to biasing of the POD modes owing to data selection.
Since POD is an energy optimal procedure, and it is usually desirable to use snapshots
from different flow conditions for model building as detailed in the previous section,
the resulting spatial POD modes will vary greatly if the number of snapshots from
two different flow states (e.g. Reynolds number) is varied more towards one or the
other flow state. This problem is aggravated if transient data is used, and different
transients yield a different number of snapshots. Taylor & Glauser (2004) describe
this effect and some attempts to resolve it. Jørgensen, Sørensen & Brøns (2003)
describe a method they refer to as sequential POD to process data from different flow
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states while producing orthogonal POD modes for a cavity flow. Although not energy
optimal, this sequential POD procedure represents the dynamic behaviour better than
regular POD according to the authors and by design the POD modes constitute an
orthogonal basis.

In an attempt to overcome this problem for the cylinder wake, Noack et al. (2003)
as well as Siegel, Cohen & McLaughlin (2003) noted independently that the main
error encountered in the case of a cylinder wake is due to the change of the mean
flow, in particular, the change of the length of the recirculation zone. This led to
the addition of a so called ‘shift mode’ (Gerhard et al. 2003) or ‘mean flow mode’
(Siegel et al. 2003), which was motivated by the mean-field theory developed by
Stuart (1958) (see Noack et al. 2003). The shift mode in essence adds one degree
of freedom to the model, which enables the model to account for changes of the
length of the recirculation zone. As a result, the model error is greatly reduced during
off-design start-up conditions, and the numerical stability of the model is improved
as well. The model with the additional shift mode was successfully employed by
Zielinska & Wesfreid (1995) for experiments and in simulations by Morzynski et al.
(2006).

While the additional mode alleviated some of the problems observed during cylinder
wake start-up simulations, the changes in the spatial POD modes that represent the
fluctuations, especially the von Kármán vortex modes, are still not captured by this
approach, and the transient dynamics of the model still do not match the results
from the Navier–Stokes simulations in terms of the initial growth rates (Noack et al.
2003). Realizing this problem, Noack et al. (2003) added spatial modes obtained from
a linear stability analysis to their set of POD derived modes used for low-dimensional
model development. These stability modes were added based on the notion that the
initial development of the vortex street can be described accurately by linear theory.
The resulting transient dynamic behaviour predicted by the model showed a vast
improvement over earlier models and the results are in good agreement with those
obtained by direct numerical simulations. This development is a further indication
that the main issue in developing dynamically accurate low-dimensional models lies
in obtaining a mode set that spans the entire parameter range of interest. However,
obtaining stability modes for any flow field is no easy task, and there is no guarantee
that it is possible to obtain these modes for more general three-dimensional flow fields
(see also Graham et al. 1999a, b).

In essence, the POD modes either fail to cover the dynamic behaviour of the
flow well if all available data from different flow conditions are processed en bloc
(Jørgensen et al. 2003), or the resulting modes are no longer orthogonal if the data
from different flow conditions are processed separately, which at a minimum requires
further processing steps. One approach was used by Morzynski et al. (2006) and
Luchtenburg et al. (2006), who employed an interpolation scheme to cover flow states
that are between the flow states used for mode derivation, thus allowing for a model
that covers transient dynamic effects. Other approaches to precondition data before
processing it using POD have been successfully used as well. Ma & Karniadakis
(2002) used a modelling approach for a three-dimensional cylinder wake that uses
both two- and three-dimensional modes in order to capture the spanwise behaviour
of the flow correctly. They also derived modes from different Reynolds-number flow
fields in order to build models that correctly model the bifurcation from two- to
three-dimensional flow behaviour. While all of the attempts to precondition data
before processing them with POD described so far were aiming at a priori enlarging
the mode basis to cover a broader set of flow conditions, a second fundamentally
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different approach to maintaining modal validity for changing flow conditions has
also been reported. Referred to as trust region POD, the idea is to check on the
validity of the POD model while the flow is changing, and to recalculate the POD
basis once the modes are found to be inaccurate. Introduced initially by Fahl (2000),
Bergmann & Cordier (2006) employed this method to control the circular cylinder
wake. Although the resulting optimization problem is simpler, an iterative approach
with recalculation of the POD modes is required. This also applies to Ravindran
(2000) who used a POD based model that is periodically updated to extend its range
of validity. Sirisup et al. (2005) employed a similar equation-free method that updates
the POD based model periodically with CFD simulation data, and reported this
approach to be less sensitive to changes in Reynolds number.

In the third step of model development, the resulting mode amplitudes from
the POD procedure must be described in terms of their dynamic behaviour using
a set of equations. An established method for deriving a set of equations based
on POD modes is the use of a Galerkin projection, where the truncated POD
results are projected onto the Navier–Stokes equations. While mathematically valid,
the resulting equations are a point design and the initial set of equations is often
structurally unstable when integrated numerically (Noack et al. 2003). This structural
instability has been described by Deane et al. (1991) as well as by Rempfer (2000),
who provides an explanation for this instability. Stuart (1958) described a method to
solve this instability problem, and recently developed models that take this approach
into consideration arrive at structurally stable models (Noack et al. 2003). However,
for all Galerkin models, the implementation of the actuation into the model is a
major challenge, and is often limited to the addition of a linear term that must be
calibrated using experimental or computational data. The advantage of calibration is
that it negates the need for spatial derivatives, which can cause problems when data
uncertainty is present. Calibration has been successfully employed by Galletti et al.
(2004) as well as Noack, Tadmor & Morzynski (2004b). Alternatives to the use of
Galerkin projection have also been investigated. Narayanan et al. (1999) employ an
artificial neural network as an alternative method to using a Galerkin projection. They
report that this ANN approach models both the short- and long-term flow features
of a diffuser flow, however, the model develops phase errors over longer time spans.
Khibnik et al. (2000) continue the work of Narayanan et al. (1999), commenting on
the complementary nature of both ANN- and Galerkin-based models. Sahan et al.
(1997) compared ANN- and Galerkin-based projections to develop low-dimensional
models based on POD mode amplitudes for a grooved channel flow. They find that,
‘The use of ANNs in order to emulate the dynamical behaviour of the flow system
combines all the benefits of the Galerkin Projection based low order models with the
parallel and fast processing capabilities of neural networks’.

While some of the publications discussed in the previous section employ an ANN
in order to develop a low-dimensional model of the flow, the more widespread use of
ANNs in flow control consists of direct mapping of flow measurements to actuator
control signals in the context of feedback flow control. Gad-el-Hak (2000) states
that, ‘For flow-control applications, neural networks offer the possibility of adaptive
controllers that are simpler and potentially less sensitive to parameter variations
as compared with conventional controllers.’ Many examples of this use of neural
networks exist and the work of Fan, Hofmann & Herbert (1993), Fan (1995), Pindera
(2002), Lee et al. (1997) may serve as examples for computational work employing
neural networks for feedback control purposes. Gillies (1995, 1998, 2000) employs an
ANN-ARX model as a one-step predictor for the POD mode amplitudes in order
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to close the feedback control loop to control a reduced-order model of the circular
cylinder wake at Re = 100. Examples of experimental work employing neural networks
to map sensor readings to actuator commands are Faller, Schreck, & Luttges (1995),
Faller & Schreck (1997), Hočevar, Širok, & Grabec (2004) as well as Efe et al. (2004,
2005). The main drawback inherent in this model-free approach is the lack of a
global flow estimation, which is not achieved when only individual sensor readings
are processed without a model in order to obtain a control command.

The importance of a model that is valid for all flow conditions encountered during
feedback lies in the ability to stably control the flow. There are numerous records
in the literature about control instabilities resulting from the inability of the model
to represent and estimate the flow correctly, for example Siegel et al. (2003) and
Tadmor et al. (2004). It is often difficult to pinpoint the problem in these cases, which
may either lie in the model or the controller itself. Thus, a thorough evaluation and
validation of a reduced-order model is crucial, especially when it is used for controller
development or evaluation.

In summary, we find room for improvement in all three steps of model development.
This is necessary to develop low-dimensional flow models based on limited amounts
of flow field data that are both robust and accurate. It is neither possible nor
necessary to obtain flow data for all possible initial and forcing conditions; however,
data from more than just the unforced flow state must be collected for a useful
dynamic model of a flow field. This requirement is not just backed by recent
experiences gathered in feedback flow control, but has been well established in
the structure controls community. In this work, we combine the main advantage of
POD, namely its optimality and thus its ability to capture the global behaviour of a
flow field with a minimum number of modes, with established system identification
techniques originally developed for the control of flexible structures and the modelling
of dynamical systems. Over the past few decades, the controls community has
developed methods to identify the dynamic properties of complex structures based on
experimental measurements. These rely on the acquisition of transient measurements
based on a known excitation input to the system. System identification methods
are then used to develop a dynamical mathematical model that can be used later
for design and analysis of an effective control law as well as for dynamic observer
development. We adapt this approach in this work, but implement POD into the
development path in order to capture the global spatial flow behaviour.

This paper is structured as follows. We first describe the numerical set-up to
obtain the flow-field data required for modelling in § 2. In § 3, we then discuss the
mathematical description of the modified POD procedure which we refer to as double
proper orthogonal decomposition or DPOD. In § 4, the fluid dynamic phenomena
observed in the cylinder wake are described and DPOD is used to develop transient
spatial mode sets and demonstrate the truncation as well as estimation error results.
Using the DPOD mode amplitudes, in § 5 we describe the low-dimensional modelling
approach used to represent the time-dependent mode amplitudes of the POD modes.
Our approach is based on a nonlinear system identification approach using artificial
neural networks (ANN). Finally, in § 6, we examine this dynamical model in terms
of robustness for various sets of open-loop forced excitations which were not used
during model development. Also, the performance of the model at off-design Reynolds
numbers is investigated. The ultimate test for the usability of the model for feedback-
flow-control applications is performed by supplying the forcing input from a feedback-
controlled simulation to the model and comparing the results to the solution of the
CFD simulation.
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Figure 1. Computational grid points (.) and POD domain boundary (white solid line). The
POD domain extends from x/D = −1 to 7 in the streamwise direction, and from y/D = −2.5
to 2.5 in the flow normal direction.

2. Simulation set-up
For the numerical simulations, the commercial finite-volume code Cobalt, solving

the compressible Navier–Stokes equations (Strang, Tomaro & Grismer 1999), was
used. The numerical method is a cell-centred finite-volume approach applicable to
arbitrary cell topologies (e.g. hexahedra, prisms, tetrahedral). The spatial operator
uses the exact Riemann solver of Gottlieb & Groth (1988), least-squares gradient
calculations using QR factorization to provide second-order accuracy in space, and
TVD flux limiters. A point implicit method using analytic first-order inviscid and
viscous Jacobians is used for advancement of the discretized system. For time-
accurate computations, a Newton sub-iteration scheme is employed, and the method
is second-order accurate in time.

Boundary conditions at the far field are implemented as Riemann invariants.
The cylinder surface is modelled as an adiabatic non-slip surface. Transverse body
translation was used as forcing input to obtain open-loop forced data sets. Rigid-body
motion is achieved through an arbitrary Lagrangian Eulerian (ALE) formulation,
where the grid is neither stationary nor follows the fluid motion. The conservation
equations are solved in an inertial reference frame, but the spatial operator is modified
so that the advection terms are relative to the (non-inertial) grid reference frame. A
number of Newton sub-iterations are used to reduce errors associated with integrating
over the time step with an implicit temporal operator.

For all investigations presented here, a structured two-dimensional grid with 63 700
nodes and 31 752 elements was used (figure 1). The grid extended from −16.9 cylinder
diameters to 21.1 cylinder diameters in the (streamwise) x-direction, and ±19.4 cylinder
diameters in (flow normal) y-direction, with the origin located at the cylinder centre.
During simulation, data were collected only within the POD spatial domain extending



8 S. G. Siegel and others

from x/D = −1 to x/D = 7 in the streamwise direction, and from y/D = −2.5 to
y/D = 2.5 in the flow normal direction. This resulted in about 21 000 spatial sampling
locations used to calculate POD modes.

Other pertinent simulation parameters (see the Cobalt User’s Manual† for more
details):

Reynolds number Re = 100;
Damping coefficients: advection =0.01; diffusion =0.00;
32 Iterations for matrix solution scheme;
3 Newtonian sub-iterations;
Non-dimensional time step Δt∗ = Δt(U/D) = 0.05.

The unsteadiness in the simulations was triggered by initially skewing the incoming
flow by α =0.5◦ in order to introduce an initial perturbation. A grid and time
resolution study showed good convergence for the simulation parameters outlined
above. For further validation of the unforced cylinder wake CFD model at Re = 100,
the resulting value of the mean drag coefficient, cd , was compared to experimental
and computational investigations reported in the literature. At Re = 100, experimental
data, reported by Oertel (1990) and Panton (1996), point to cd values ranging from
1.26 to 1.4. Furthermore, Min & Choi (1999) report several numerical studies that
obtained drag coefficients between 1.34 and 1.35. The COBALT CFD model used
in this effort resulted in a value of cd0 = 1.35, which compares well with the values
in the literature. Another important benchmark parameter is the Strouhal number
(St = f ∗ D/U ), which is the non-dimensional vortex shedding frequency for the
unforced cylinder wake. Experimental results at Re =100, presented by Williamson
(1996), show Strouhal numbers ranging from 0.163 to 0.166. The Strouhal number
obtained in this effort is St =0.163, which also compares well. The non-dimensional
time step in connection with the natural shedding frequency yielded about 100 CFD
time steps per unforced shedding cycle. This was further reduced by down sampling
to 20 snapshots per cycle which were then used as input to the DPOD procedure
described in the following.

3. Extensions to proper orthogonal decomposition
The proper orthogonal decomposition (POD) of a two-dimensional scalar spatial

field u evolving over time can be written as (Holmes, Lumley & Berkooz 1996)

u(x, y, t) =

∞∑
j=1

aj (t)ϕj (x, y). (3.1)

Here, aj (t) are the mode amplitudes of the spatial modes ϕj (x, y). For practical
applications, formulating the problem using the method of snapshots (Sirovich 1987)
proves to be advantageous. While this decomposition yields as many modes as there
are snapshots in the original data set, it is typically possible to truncate the POD
model at a relatively low number of modes while retaining most of the energy of the
original flow field. This can be done by either inspecting the energy distribution in
the modes, or by inspection of the spatial modes, which typically will not show any
discernible structure beyond a certain mode number j . If POD is performed on the
flow field without subtracting the mean flow, the first mode will be the mean flow,
followed by modes representing the large-scale fluctuations in the flow field. In the case

† Cobalt Solutions, LLC, www.cobaltcfd.com.
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of the cylinder wake, the largest fluctuating modes are the two modes representing
the von Kármán vortex street. Since in almost all cases the modes obtained by POD
describe the main features of the flow, we will refer to them as the main modes. The
decomposition works particularly well for flow fields with large time-periodic features
such as the periodic vortex shedding in wake flows.

3.1. Short time proper orthogonal decomposition (SPOD)

Gillies (1995) and Siegel et al. (2005) have shown that for time-periodic flows, modes
identical to those obtained from snapshot ensembles containing a large number, of
shedding cycles can be obtained using snapshot ensembles of small integer numbers,
of cycles, down to a minimum of one shedding cycle. A similar idea to extend POD
has been developed by Glezer, Kadioglu & Pearlstein (1989) for flows that are not
statistically stationary. Siegel et al. (2005) demonstrate that the difference between a
spatial mode obtained from integer numbers of shedding cycles is minimal compared
to a POD decomposition obtained from a large number (in the limit infinite) of
shedding cycles. Similar behaviour is observed in a fast Fourier transformation
(FFT). While in an FFT the error due to non-integer numbers of cycles can be
alleviated using windowing functions, this approach does not appear to work for
POD decompositions (Siegel et al. 2005). Siegel et al. (2005) refer to POD of only
a single oscillation cycle as short-time POD or SPOD, owing to its similarity to
procedures such as short-time Fourier decomposition.

SPOD allows for a decomposition of time-evolving flow fields with some
approximate periodicity into (k) individual events of exactly one cycle of the dominant
frequency,

u(k)(x, y, t) =

I∑
i=1

a
(k)
i (t) ϕ

(k)
i (x, y). (3.2)

The result is a collection of K cycles in individual bins. Note that these bins may
contain a different number of samples in time, or span slightly varying time intervals
as the period of a cycle changes. However, since SPOD yields K bins of spatial POD
modes that are valid for one individual cycle of a transient flow change, it is not
as low-dimensional as we would wish. The result of SPOD is one entire mode set
for each period of the flow. It should also be noted that modes obtained from an
individual cycle are a priori not orthogonal to modes from other cycles. In fact, if the
data are completely periodic, the modes obtained from different bins are identical if
the number of snapshots is constant per cycle.

3.2. Double proper orthogonal decomposition (DPOD)

Building on the resulting spatial modes of a SPOD decomposition, we could conceive
the following mode construction procedure: if the modes in two consecutive cycles
vary only slightly, it should be possible to obtain a representation of the modes of
the second cycle as the corresponding mode of the first cycle plus a small shift. This
procedure, borne from the aforementioned ‘mean flow mode’ or ‘shift mode’ idea, can
be formalized by realizing that mode i of all bins (k) from the SPOD procedure can
be viewed as the input to a second POD (the bins now act similarly to time above)
as follows:

ϕ
(k)
i (x, y) =

J∑
j=1

w
(k)
ij Φij(x, y). (3.3)



10 S. G. Siegel and others

n snapshots

u (x, y, t)

POD
(Sirovich)

POD
(Sirovich)

POD
(Sirovich)

Truncation I SPOD modes φ

main modes
to I

Truncation

main modes
to I

Truncation

in shift direction
to J modes

Truncation

in shift direction

Orthonormalization

I × J DPOD Modes φ(x, y)

to J modes

POD
(Sirovich)

K
 b

in
s

Tim
e K

 b
in

s

J m
od

es

�
�
�

���

Figure 2. Flowchart of DPOD decomposition process.

This leads again to an optimal representation of all SPOD main modes i. Equa-
tion (3.4) summarizes the double POD (DPOD) decomposition of the velocity field u:

u(x, y, t) =

I∑
i=1

J∑
j=1

aij(t) Φij(x, y) (3.4)

This DPOD formulation takes the concept of the ‘shift mode’ one step further:
we can now develop a ‘shift mode’, even a series of higher-order shift modes, for
all main modes i by applying the POD procedure to the POD mode sets ϕ

(k)
i . The

resulting mode ensemble in its untruncated form has as many main modes I as there
were snapshots in the smallest SPOD bin, and as many shift modes J as there were
bins. It can then be truncated in both i and j , leading to a mode ensemble that is
IM × JM in size. We will thus refer to the size of the truncated DPOD mode sets by
indicating the truncation indices IM × JM in the following. A pictorial representation
of the DPOD procedure is given in figure 2. Starting in the top left-hand corner, the
data are split into K bins and each bin is used as an input data set for its individual
POD procedure. The resulting SPOD modes are then collected across the bins and
POD is applied again to obtain the shift modes.

The resulting eigenfunctions can be truncated in both I and J in the same way as
a regular POD decomposition. After orthonormalization, the decomposition is again
optimal in the sense of POD. In the limit of J = 1, the original POD decomposition
is recovered. While the different modes distinguished by the index i remain the main
modes described above, the index j identifies the transient changes of these main
modes: For J > 1, the energy optimality of the POD decomposition in that direction
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Figure 3. Normalized lift (CL/CD0, —) and drag (CD/CD0, – –) coefficients during evolution
of the limit cycle oscillation. The Reynolds number (Re/100, . . .) is ramped from 40 to 100 as
shown. The SPOD segmentation times are indicated by circles.

leads to modes that are the optimum decomposition of a given main mode as it
evolves throughout a transient data set. If J = 2, then modes Φ1,1 and Φ1,2 are similar
to the mean flow and its ‘shift mode’ or ‘mean flow mode’ as described by Noack
et al. (2003) and Siegel et al. (2003), respectively. Thus the modes with indices j > 1
can be referred to as first, second and higher-order ‘shift’ modes that allow the POD
mode ensemble to adjust for changes in the spatial modes. We will refer to all of these
additional modes obtained by the DPOD decomposition as shift modes, since they
modify a given main mode to match a new flow state due to either a recirculation zone
length or formation length change. This may be due to effects of forcing, a different
Reynolds number, feedback or open-loop control or similar events. Thus, in the
truncated DPOD mode ensemble for each main mode, one or more shift modes may
be retained based on inspection of energy content or spatial structure of the mode.

In the following, we will demonstrate how this DPOD procedure can be used to
create mode ensembles that cover both the unforced time-periodic vortex-shedding
state of the circular cylinder wake, as well as the low-amplitude forced flow within
the lock-in region. This mode ensemble will thus cover not just the limit cycle, but
also the influence of forcing onto the vortex-shedding process.

4. Application of DPOD to cylinder wake data
4.1. Start-up transient

The von Kármán vortex street develops as the result of global flow instability
(Williamson 1996). This transient development of the oscillatory limit cycle starts
when a closed recirculation zone forms downstream of the cylinder that is steady
in time for Reynolds numbers smaller than Rec = 47. On increasing the Reynolds
number, this unstable flow field starts to exhibit vortex shedding, which increases in
strength over several shedding cycles as evidenced by the fluctuations in the lift force
as shown in figure 3. During this transient start-up, both the shedding frequency and
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the strength of the shed vortices change. By starting a CFD simulation at a Reynolds
number below this threshold (Re =40 in our case), and subsequently ramping up the
flow speed to the target Reynolds number of Re = 100, we can study the details of
the development of the limit cycle. The ramping was done smoothly using a constant
acceleration, and no numerical artefacts were observed during the transition.

The traditional approach to development of a set of POD modes uses data from
one or several shedding cycles of the fully developed nonlinearly saturated limit
cycle, i.e. data from later than about t/T =55 into the simulation shown in figure 3.
Although this set of POD modes models the limit cycle extremely well, it can be seen
in figure 4 that an increasing estimation error in terms of the L2 norm results when
data sets taken during the transient start-up of the shedding are mapped onto these
spatial modes. The POD spatial mode ensemble was truncated here at 10 modes,
but the estimation error remains unaffected when more spatial modes are retained.
The reason for this large estimation error lies in the drastic changes of both the
mean flow and the formation length during the transient start-up. The length of the
recirculation zone, which extends initially to about 5 cylinder diameters downstream
of the cylinder centre, shortens to about 2.5 cylinder diameters once the limit cycle is
fully developed. The formation length (Williamson 1996), equivalent to the location
of the maximum velocity fluctuations, changes in a similar fashion.

The change in mean flow can be compensated for by the addition of an artificially
created ‘shift’ (Gerhard et al. 2003) or ‘mean flow’ (Siegel et al. 2003) mode, which
allows the length of the recirculation zone to adjust. This addition to the mode
set greatly reduces the estimation error, as seen in figure 4. However, the fluctuating
modes are unchanged, and thus the formation length is only correctly modelled for the
limit cycle. Since there is no unsteadiness initially, the model including the shift mode
shows small errors both for the steady recirculation zone flow at the beginning of the
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start-up transient, and for the limit cycle that was used to derive the spatial POD
fluctuating modes. In between these states, however, the model shows a significant
error caused by the inability of the fluctuating modes to track the change of the
formation length correctly during start-up. Since this exchange of energy between
the fluctuating modes and the mean flow dominates the start-up dynamics, the POD
model with shift mode only (referred to in Noack et al. 2003 as Model B) cannot
possibly capture the dynamics of the start-up transient correctly, as was shown in
figure 12 of Noack et al. (2003). However, the effects of formation length change may
be correctly included in a low-dimensional model by adding modes that capture this
behaviour. Noack et al. (2003) achieve this using stability modes derived from a global
stability analysis of the steady solution of the flow. In this work, we will demonstrate
a systematic approach to achieve the same effect, using the DPOD decomposition
detailed below.

Processing the same data set using the DPOD procedure, we can obtain a 10 or
15 mode model by retaining five main modes and either one or two shift modes for
each main mode. The spatial POD modes of the 5 × 2 mode model are shown in
figure 5. To obtain these modes, separate POD decompositions were performed for
11 independent snapshot ensembles consisting of exactly one shedding cycle each.
The shedding cycles were determined using a peak-detection algorithm applied to
the lift force shown in figure 3 and are indicated by circles. Since the temporal
sampling rate remained the same at about 20 snapshots per shedding cycle of the
time periodic flow, the initial bins contain more snapshots owing to the longer period
than the time-periodic flow bins. The resulting POD mode ensembles were truncated
to retain five main modes each (I = 5) and subjected to a second POD decomposition
performed on a given main mode from all snapshot ensembles, i.e. on the 11 different
modes 1, modes 2, and so on. The results of this second POD decomposition were
truncated at either two or three modes for the 5 × 2 or 5 × 3 mode model, respectively.
The truncated DPOD spatial mode basis was then orthonormalized. Comparing the
DPOD-based estimation errors for both models (figure 4), it can be seen that the
maximum of the estimation error during the entire start-up transient is reduced to
well below 1 % for the 5 × 2 mode model, and a fraction of 1 % with an almost flat
distribution for the entire start-up transient for the 5 × 3 mode model. It should be
noted that the DPOD models, if not truncated, will recover the exact data set used
for their derivation, just as the traditional POD models. Inspecting the DPOD spatial
modes shown in figure 5 in more detail, it can be seen that mode i = 1, j = 1 is the
mean flow, followed by modes i =2, j = 1 and i = 3, j = 1 as the Kármán vortex-
shedding modes. These modes together contain more than 90 % of the fluctuation
energy of the limit cycle. The normalized energy content of the DPOD modes is
shown in figure 6. Modes i = 4, j = 1 and i = 5, j = 1 are a higher-order harmonic
mode, with about 4% of the fluctuation kinetic energy in each mode. While not
identical, modes i =1, j =1 to i = 1, j = 5 are similar to the mean flow and the first
four modes of a regular POD decomposition performed on limit cycle data. Mode
i = 1, j = 2, which is the shift mode of the mean flow, is very similar and serves the
same purpose as the shift mode constructed by Noack et al. (2003) or Siegel et al.
(2003). The main improvement of DPOD, however, lies in the shift modes obtained
for the main von Kármán vortex-shedding and higher modes, modes i = 2, j = 2 to
i = 2, j =5. Comparing the minima and maxima of a given fluctuating spatial mode
and its shift mode, we can see that mode and shift mode are out of phase close
to the body, and in phase far downstream. Thus, adding a main mode and its shift
mode with the same phase will result in weaker peaks close to the cylinder, and
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Figure 6. Energy content for the DPOD model developed from transient Reynolds number
(Re = 40 to 100 data shown in figure 2), as well as transient open-loop forced data.

stronger peaks farther downstream. This is a situation encountered during the onset
of vortex shedding, where the formation length is relatively large. Considering the
mode amplitudes of a given fluctuating mode and its shift mode shown in figure 7,
it can be seen that at the beginning of the simulation the amplitudes of the modes
and their shift modes are in phase. This correctly models the long formation length
observed in inspecting the original data. However, around t/T = 9, the shift mode
amplitudes experience a phase reversal with respect to their respective main mode
amplitudes, and from then on remain 180◦ out of phase. This effectively results in a
subtraction of the spatial mode and its corresponding shift mode, which results in
stronger modal peaks close to the cylinder, and weaker peaks further downstream.
This correctly models the flow state encountered during the limit cycle, where the
formation length is shorter and the vortices form closer to the cylinder. We conclude
from these observations that the shift modes obtained from the DPOD procedure
achieve the same purpose for adjusting the formation length as the mean flow shift
mode does for the mean flow: it allows the POD model to correctly capture the
changes encountered during transient flow situations.

4.2. Transient forced simulations

With these encouraging results in modelling unforced flow behaviour, we proceed
to examine the effectiveness of the DPOD procedure in modelling the transient
behaviour of open-loop forced flow fields. The effect of cylinder translation on the
vortex shedding behind a circular cylinder has been investigated in the literature in
detail, starting with the investigations of Koopmann (1967). The parameter space is
two-dimensional considering both the non-dimensional peak cylinder displacement,
A/D, and the forcing frequency normalized by the natural shedding frequency f0,
(f − f0)/f0. Figure 8 shows the results of Koopmann (1967) indicating the so-called
lock-in region, within which the vortex shedding exhibits a fixed phase relationship
with the forcing. Outside of this lock-in region, the flow response to the forcing is
chaotic. The question is now how well (if at all) a DPOD model can capture the wake
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Figure 7. Mode amplitudes aij of the first 5 × 2 DPOD modes during transient development
of the unforced cylinder wake limit cycle, Re = 100. For corresponding spatial modes, refer to
figure 5. (a) j = 1, (b) j = 2.

behaviour within this lock-in region, given only a limited number of simulations with
which to develop the model. Of particular interest is the question of whether the
DPOD model will yield usable flow-field estimates for data sets that were not used
for the development of the spatial modes. Note that in the transient start-up model
development presented above, the flow field used for model development and for state
estimation were identical.

For the transient forced flow-field investigations, we employ five simulation data
sets obtained for different forcing conditions (figure 8) to derive a set of spatial DPOD
modes. We then proceed to project the snapshot data onto these spatial modes to
derive the mode amplitudes not just for the data sets from which they were obtained,
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but also for four additional data sets within the lock-in region that were not used for
the spatial mode development. The rationale behind this is to test the robustness of
the model for off-design conditions: even within a parameter space that is only two-
dimensional, it is impossible to include all possible combinations of forcing parameters
in the model development. Thus, it is of interest to know how much information is
required in order to yield a stable and accurate flow model for an entire range of
forcing conditions, in this case, for the lock-in region at small amplitudes.

The simulations for obtaining open-loop forced data were restarted with the flow
solution from the end of the unforced limit cycle simulation presented above. In
order to prevent non-physical transients in the flow, the cylinder displacement was
prescribed as a C2 continuous function yc(t). The forcing was started exactly out of
phase with the vortex shedding, which yields the longest possible transient while the
phase of the shedding adjusts to the phase of the forcing, and was applied for 15
periods of the forcing frequency. A typical forcing signal is shown in figure 9(a). The
flow response to the forcing is dependent on both the amplitude and the frequency of
the forcing; in general, the smaller the forcing amplitude, the longer the transient after
activation of the forcing. Figure 9(b) shows the transient for the particular forcing
conditions to last for about 10 shedding cycles before a stable phase relationship
between forcing and vortex shedding is established. The unsteady lift coefficient in
this phase-locked state is larger than in the unforced flow field, indicating stronger
vortex shedding, which results in an increase in the drag coefficient cD as well. While
shown for one forcing condition only, all open-loop forced cases investigated show
this behaviour, even though the amount of increase in lift fluctuations and drag
coefficient varies for different forcing parameters. After the forcing is stopped, the
flow resumes its original shedding pattern, indicated by a return of lift fluctuations and
drag coefficient to the unforced values. The amount of time that this second transient
lasts, again depends on the forcing parameters. Both transient phases yield important
information on the dynamics of the flow and its interaction with the forcing.
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The goal of developing a low-dimensional model is to capture the flow behaviour
in these situations accurately, not just for the unforced and periodically forced flow
states. The first step towards this goal is to develop a spatial mode set that is able
to represent the flow state correctly during all phases, unforced, forced and transient.
In order to achieve this, DPOD was applied to the six simulation runs indicated in
figure 8 just as for the unforced start-up simulation presented above. The DPOD
decomposition was truncated at 3 main modes (consisting of the mean flow and the
von Kármán modes) and one shift mode, yielding the total DPOD mode set of size
3 × 2 modes shown in figure 10. Comparing the mean flow and its shift mode obtained
from the transient forced simulations to those obtained during the start-up of the
unforced flow shown in figure 5, it appears that the roles of mode and shift mode are
reversed, but otherwise the spatial distribution is similar. This is to be expected, since
the majority of the data in the transient forced simulations are acquired with the
forcing active. Thus, more energy is contained in the modes modelling the controlled
flow, making them dominant in terms of energy over the modes representing the
unforced flow. The mode amplitudes shown in figure 11 confirm this; the amplitude
of, for example, mode i =2, j = 1 is larger than the amplitude of mode i =2, j = 2
during the time when the forcing is active.

In order to minimize the number of modes as much as possible, the DPOD model
was truncated to include only main modes i � 3, which contains the mean flow and
the two von Kármán modes. This 3 × 2 mode model was then projected onto all ten
of the open-loop forced simulations performed within the lock-in region indicated
in figure 8, including the four simulations used for derivation and the additional
simulations performed for model verification only. The mode amplitudes obtained by
this projection for one of the simulations that was not used to derive the spatial modes
are shown in figure 11. These mode amplitudes were then used to reconstruct the flow
field, and the reconstructed flow field was compared to the simulation results. The
modelled flow field, reconstructed from these mode amplitudes and their respective
spatial modes, was then compared to the results of the numerical simulation. The
instantaneous r.m.s. error of the streamwise velocity component within the entire
x/D, y/D POD plane is shown in figure 12. Although the error is about 1 % of
the free-stream velocity during the unforced times (t/T < 18 and t/T > 33) at the
beginning and end of the simulation, it is largest during the transient encountered
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Mode set of 3 × 2 DPOD modes.

Truncation 3 × 2 Truncation 5 × 3 Truncation 5 × 5 Truncation 8 × 7

Modes in main 3 5 5 8
direction I

Modes in shift 2 3 5 7
direction J

Number of modes 6 15 25 56
Estimation error 3.86 1.67 1.03 0.36

(% U∞)

Table 1. Root mean square error of the streamwise velocity component in per cent of
free-stream velocity averaged over the entire flow field and simulation time as a function of
mode truncation. The data set analysed is the transient development of the limit cycle.

after starting the forcing, with a second smaller peak when the forcing is turned off.
During the phase-locked portion of the simulation (t/T = 22 . . . 33) the error is about
4% of the free-stream velocity, or four times larger than in the unforced case.

There are two main reasons for this increase: (i) since this particular data set was not
used for the development of the spatial modes, the match of the spatial modes to the
data is less than optimal; and (ii) the open-loop forcing creates larger amplitudes of
higher-frequency disturbances, as can be seen by inspecting the fluctuation amplitudes
in the error during the unforced and locked-in portions of the simulation. During
the lock-in portion, these fluctuations are significantly larger, indicating more energy
in the higher-order modes. Since these modes have been truncated, however, the
error increases owing to spill-over effects. Overall, however, the modelling error never
exceeds 6% of the free-stream velocity, and is usually well below 5 %. This is more
than sufficient for typical feedback-control purposes. Furthermore, the error may be
reduced by retaining more modes using less aggressive truncation of the model. This
is shown in table 1, where the same DPOD model is truncated to different numbers
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Case number Forcing frequency Forcing amplitude Time-averaged mean flow
(100% f0) (y/D) field difference (%U∞)

1 1 0.25 2.65
2 1 0.3 3.00
3 1.05 0.3 2.97
4 0.9 0.3 2.97
5 1.1 0.3 3.18
6 0.95 0.3 2.91
7 1 0.2 2.38
8 1 0.1 1.79
9 1 0.15 2.09

Table 2. Time-averaged r.m.s. errors of the streamwise velocity component in per cent of
free-stream velocity averaged over the POD domain and simulation time for all different
transient forced simulations using the DPOD modes truncated to 5 × 3 modes.

of main and shift modes. From an actual comparison between the original CFD
data and the truncated DPOD estimates, it can be seen that the estimation error
becomes smaller as the number of modes retained in the model is increased. This
decrease in error is consistent with the roll off seen in the mode energy plot (figure 6).
Although only one particular data set, the forcing using 25 % of the cylinder diameter
displacement at the natural shedding frequency, is presented for reasons of brevity,
all investigated data sets show errors over time similar to that presented in figure 12.

The time averaged r.m.s. errors for all different data sets are summarized in table 2.
These results are based on a 6 mode model consisting of modes 11 to 32 shown in
figure 10. These same modes were projected onto all data sets in the same fashion
as presented for the forcing case A/D = 0.25, f/f0 = 1 in order to determine the
errors shown in table 2. Although we expect to find larger errors for data sets not
used for spatial mode development, the error magnitude correlates more with forcing
amplitude than anything else. This is another indication that modal truncation drives
the error. For larger forcing amplitudes, more energy is contained in the truncated
higher-order modes. With the largest error at 3.18 %, however, the agreement between
the model and the flow field can be considered to be quite good. This agreement is a
necessary prerequisite for the development of a low-dimensional mathematical model
based on the mode amplitudes which will be described in the following chapter.

In summary, DPOD is a computational tool that is suitable for developing low-
dimensional POD bases that span a variety of flow conditions, both from different
Reynolds numbers and different forcing inputs. Additionally, transient flow situations
can be modelled with good accuracy. The resulting DPOD basis is also valid for
flow situations that were not included in its derivation, as long as they are within the
parameter range spanned by the snapshots used for derivation of the basis, which
constitutes an interpolation capability of the DPOD basis.

5. Low-dimensional modelling of DPOD mode amplitudes
With the DPOD spatial mode basis, developed in the previous section, covering a

range of both Reynolds numbers and forcing conditions, the entire time-dependent
global dynamic behaviour of the flow is captured in the corresponding mode
amplitudes. Thus, the next goal is to develop a set of equations describing the
dynamic behaviour of these mode amplitudes. These equations are required both for
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development of control algorithms, and for testing these controllers. Traditionally,
Galerkin projections of various types have been used to project the mode amplitudes
onto the Navier–Stokes equations. However, this approach has led to a variety of
problems which are discussed in §§ 1 and 5.1, leading us to use a different modelling
approach as described in the following section.

5.1. General comments on the modelling approach

Before initiating the description of the development of a meaningful low-dimensional
model of the DPOD mode amplitudes, it is advisable to determine the characteristics
most sought after, and the corresponding choices made in this effort. Given the
complexity of the problem at hand, it may not be possible to address it with an
off-the-shelf package, but instead with a unique synthesis of a few tools that appear
to be promising. The most important features are as follows.

5.1.1. Structured scalable methodology

Developing an ad hoc approach, as demonstrated by Gillies (1995) using the least-
squares technique, may address a particular problem for a given design point under
certain conditions, but is not generic enough. We would like an approach which
may be applied to a wide range of flow conditions (e.g. Reynolds numbers). Another
important principle is to let the data determine the dynamic complexity, i.e. the
number of DPOD modes of the reduced-order model, using defensible criteria. This
approach differs from that of Noack, Tadmor & Morzynski (2004a), who use first
principles to make an a priori decision on the number and nature of the modes.

5.1.2. Numerical issues and model stability

The nonlinearity and scaling characteristics of the modes lead to numerical stability
issues which undermine the development and analysis of effective estimation and
control laws. In certain instances, numerical problems arise owing to the effects of
noisy data on the computation of higher-order derivatives. This may be resolved, as
shown by Deane et al. (1991), where only first derivatives are used by transforming
the viscous term using Green’s law. In an alternative approach to assuring model
stability, the ARX (Auto Regressive eXternal input) dynamic model structure, which
is widely used in system identification, is incorporated. A salient feature of the ARX
predictor is that it is inherently stable even if the dynamic system to be modelled is
unstable. This characteristic of ARX models often lends itself to successful modelling
of unstable processes (Nelles 2001).

5.1.3. Model validity and robustness

A prerequisite of model building is the determination of the dynamic envelope
within which the model is valid. Later, after obtaining a reduced-order model, we
must ensure that it is capable of providing relatively accurate predictions within
this desired validity region, as described by the envelope presented in figure 8. In
a following section, we demonstrate the ability of the model to predict the flow
field when provided with a complex input signal obtained from a closed-loop CFD
simulation.

5.1.4. Universal approximation of nonlinear mappings

It would be desirable to obtain a linear model that is able to meet all of the
requirements described above. Unfortunately, limitations in the ability of linear
systems to model a nonlinearly saturated limit cycle oscillation are to be expected.
However, in some instances, certain nonlinear systems may be successfully modelled
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using the addition of a set of virtual states (Ljung 1999). We spent some considerable
time in vain trying to apply state-of-the-art structured numerically stable system-
identification techniques to this flow field. Linear state-space models having 25–90
states were developed and we concluded that the predictive capability is insufficient for
feedback control as detailed by Cohen et al. (2006). Consequently, we decided to look
into universal nonlinear approximators, such as artificial neural networks (ANNs),
for their inherent robustness and capability to approximate any nonlinear function to
any arbitrary degree of accuracy (Cybenko 1989). The ANN employed in this effort,
in conjunction with the ARX model, is the mechanism with which the dynamic model
is developed using the DPOD mode amplitudes obtained from the CFD simulation
data. Nonlinear optimization techniques, based on the back-propagation method, are
used to minimize the difference between the DPOD mode amplitudes and the ANN-
ARX model estimation of the same while adjusting the weights of the model (Haykin
1999). While ANNs have many advantages as stated, there are also drawbacks. These,
however, can be avoided by proper design and analysis approaches, as described in
the following. The input–output set must be carefully constructed so as to avoid
problems such as numerical ill-conditioning, over-fitting the data during the learning
stage, and ensuring that the data is not over-represented in one region in comparison
to another region (Nørgaard et al. 2000). A major problem using ANNs concerns
stability analysis. One of the best methods to address this is a stochastic robustness
analysis technique based on Monte Carlo simulations. This approach, while more
time-consuming than stability analysis for linear models, is more accurate than using
linearized stability methods, since it does not make any simplifying assumptions.
However, this added numerical effort is small compared to the numerical cost of the
CFD simulations.

5.2. Mathematical formulation of the ANN-ARX method

System identification of a cylinder wake can be accomplished with a linear ARX
model,

a(t) = q−d B(q−1)

D(q−1)
f (t) +

1

D(q−1)
e(t), (5.1)

where a(t) is the state vector representing the POD mode amplitudes aj (t) shown
in (1.1). f (t) describes the external input, which in the current effort is the vertical
displacement of the cylinder and e(t) is the white noise vector. For the above case, B
and D are matrix polynomials in q−1.

The time delay operator is defined as

q−da(t) = a(t − d), (5.2)

where d is a multiple of the sampling period. The parameter matrix, θ , and the
regression vector, φ(t), are respectively defined as

θ = [dijbij ]
T , (5.3)

ϕ(t) = [a(t − 1), . . . , a(t − n), f (t − d), . . . , f (t − d − m)]T . (5.4)

As can be seen in (5.4), the vector ϕ(t) is comprised of past states and past inputs.
The ARX predictor (Ljung 1999) may then be written as

â(t |θ) = q−dB(q−1)f (t) + [1 − D(q−1)]a(t) = ϕT (t)θ. (5.5)

Equation (5.5) represents an algebraic relationship between the prediction, given on
the left-hand side, and past inputs and states, summarized by ϕ(t). The parameter
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Figure 13. System identification for dynamic modelling of DPOD mode amplitudes.

matrix, θ , is determined during the estimation process. The main advantage of the
ARX predictor is that it is always stable, even when the dynamic plant (the flow field
in this case) being estimated is unstable. This feature is of utmost importance when
modelling an unstable system such as the absolutely unstable cylinder wake flow.

The main drawback of this approach is that it is limited to modelling of linear
systems which, as described above, is insufficient for modelling of unstable limit
cycles. A general representation of nonlinear system identification, based on a hybrid
ANN-ARX approach (Nørgaard et al. 2000), may be written as

a(t |θ) = g[ϕ(t), θ] + e(t), (5.6)

where θ is the matrix containing the weights of the ANN that are estimated by a
back-propagation algorithm using a training data set (Nørgaard et al. 2000), and g

is the nonlinear mapping realized by the feed-forward structure of the ANN.
The ANN-ARX predictor can then be expressed as

â(t |θ) = g[ϕ(t), θ]. (5.7)

The basic methodology to design an ARX-ANN plant for dynamic modelling of the
DPOD mode amplitudes is presented in figure 13. The ANN-ARX algorithms used
in this effort are a modification of the toolbox developed by Nørgaard et al. (2000).
We performed three main modifications to the toolbox. The first extends the toolbox
for use in simulations, as opposed to one-step prediction, of MIMO (multi-input,
multi-output) systems. Secondly, the implementation of the time tapped delay system
allows for the periodic sampling rate of inputs to the network. This helps to decrease
network training times, and also extends the time history of the inputs while keeping
the number of inputs low. Thirdly, the network was decoupled, meaning the modes
could be trained separately and compiled into one large network at the end. This
allowed for greater flexibility in training each individual mode. Although this resulted
in a much larger, more complex final network, simulation times are negligible when
compared to training times. A schematic representation of the feed-forward ANN-
ARX network topology is presented in figure 14. After the DPOD mode amplitudes
were obtained from the CFD data as described in the previous section, a single hidden
layer ANN-ARX architecture was selected. The training set comprised input–output
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Figure 14. Example ANN-ARX system identification network topology. The model displays
a two-layer (tanh and linear), 3 neuron, 2 mode output, 12 input neural network. The periodic
sampling rates Rx , Yx , Axn , account for the number of time delays between sampled data points.
Refer to table 3 for actual time delays and number of inputs for the 2 × 3 DPOD-ANN-ARX
model.

data obtained from CFD simulations. The model is validated for off-design cases and
if the estimation error is unacceptable, then the ANN architecture is modified. This
cycle was repeated until estimation errors were acceptable for all off-design cases.

The ANN-ARX predictor is inherently stable because, although the modelling
approach is nonlinear, the algebraic relationship between the prediction and past
states and inputs is preserved. This is extremely important when dealing with nonlinear
systems represented by PDEs such as the Navier–Stokes equations, since the stability
problems are more severe than in linear systems. The ANN-ARX approach is an
ideal choice when the system to be modelled is deterministic and the signal to noise
ratio (SNR) of the data is good (Nørgaard et al. 2000).

The choice of the specific artificial neural network (ANN) architecture was based
on three main design criteria. The first concerns the number of hidden layers. This was
selected as one, i.e. a single hidden layer, since it is the simplest form that allows for a
universal approximator (Cybenko 1989) and its effectiveness for system identification
problems has been shown by Nørgaard et al. (2000). The second decision concerns the
number of nodes. If the number of nodes in the hidden layer is small, the resulting
error is unacceptable. As the number of nodes is increased, the error is reduced at
the expense of computational complexity until a number of nodes is reached beyond
which no further improvement in error is observed. The third design criterion is the
choice of the network input’s time histories and delays. Larger sampling periods (more
data inputs) allow for a more dynamically based network. Networks with larger time
histories are more accurate because of their ability to predict future outputs based on
a better knowledge of the past. The trade-off is that training time is greatly increased
with larger input vectors. The time tapped delay technique allows for a much broader



26 S. G. Siegel and others

Number of past inputs
Input or outputs to neural net Delay between inputs Total time history

Reynolds number 1 Rx 10 10
Actuator position 4 Yx 2 8
Mode 1,1 1 Ax1,1 1 1
Mode 2,1 3 Ax2,1 8 24
Mode 3,1 3 Ax3,1 8 24
Mode 1,2 1 Ax1,2 1 1
Mode 2,2 1 Ax2,2 12 12
Mode 3,2 1 Ax3,2 12 12

Table 3. Network topology representing inputs and their time delays of the 3 × 2
DPOD-ANN-ARX model. The number of past inputs per signal and the delay which is
the number of time steps in between sampling periods (Rx , Yx , Axn) are shown. The product
of these two is the total time history.

sampling period while keeping the number of inputs low, thus improving the training
speed. For example, instead of using every single past delay input for a certain period
of time, the time tapped delay can be set to 2 and the network will skip every other
data point, thus reducing the number of inputs by 50 % while maintaining the same
total length of the sampling history. The time tapped delays for the Reynolds number
input (Rx), actuator input (Yx) and previous mode amplitudes (Axn) are presented in
table 3. Figure 14 represents a simple example of an ANN-ARX model.

Initially, neural networks were designed and trained for the 6 mode (3 × 2 DPOD)
model. However, training times were excessive, leading to the realization that new
techniques were necessary. The network was split into smaller sub-networks which
could be trained much more efficiently. These smaller networks can be superimposed
and compiled into a larger overall network. Thus, many parameters exist in the design
of ANN-ARX models. The resulting ANN has the following features.

Input layer. There are two network input parameters, the normalized cylinder
displacement and the Reynolds number. In addition to these readings, in order
to obtain a strong representation of the dynamics of the system, the input layer
includes past outputs of the six modes and past inputs for each of the two inputs
(Reynolds number and cylinder displacement) as described in the toolbox developed
by Nørgaard et al. (2000). Table 3 presents the actual input/output time delays. The
number of time delays for the past outputs was about one shedding cycle. On the
other hand, the number of time delays for the past inputs was about half a shedding
cycle. The selection of time delays for past inputs/outputs was based on a sensitivity
study which investigated the trade-off between estimation accuracy and network
complexity. Therefore, the final configuration of the input layer chosen includes six
mode outputs, namely, the first three main DPOD modes i = 1, j = 1; i = 2, j = 1;
i = 3, j = 1 and their shift modes with a maximum of 24 time delays; two inputs, the
Reynolds number and the actuator position for a maximum of 10 time delays; and
one bias input. The total number of inputs to the net is therefore 15 (see table 3).

Hidden layer. There is one hidden layer consisting of 130 neurons. The activation
function in the hidden layer neurons is the tanh function. A single bias input has
been added to the output from the hidden layer.

Output layer. There are 6 outputs, namely, the 6 states representing the DPOD
mode amplitudes of the 3 × 2 DPOD spatial mode basis. The output neurons have
linear activation functions.
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Figure 15. Neural network training data. t =0 s to 35 s: cylinder displacement: Case 10 at 4
different phase angles of 0◦, 90◦, 180◦ and 270◦, Case 1, Case 4, Case 5, Case 8 (see figure 8).
t =35 s to 64 s: Reynolds number transients: 100 → 40 → 100 → 60 → 100 → 160 → 100.

Weighing matrices. The weighing matrix between the input layer and the hidden
layer is of size (130 × 16), whereas the weighing matrix between the hidden layer and
the output layer is of size (6 × 131). These weighing matrices are initialized randomly
before training.

Training the ANN. Back propagation, based on the Levenberg–Marquardt
algorithm, was used to train the ANN using the toolbox of Nørgaard et al. (2000).
The training data (21 790 time steps) is comprised of output from multiple CFD
simulations (figure 15). The first portion of the training consists of open-loop forced
transient simulations comprising design cases 1, 4, 5, 8, 10 (see figure 8). The forcing
of case 10 is repeated four times, with different starting phase angles of 0◦, 90◦, 180◦

and 270◦ between the shedding of the vortices in the wake and the actuation signal
at the start of the actuation. This leads to very different transient adjustment in the
wake, which was found to be an essential feature for network training. During these
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Mode i, j Case 1 Case 4 Case 5 Case 8 Case 10 Case 2 Case 3 Case 6 Case 7 Case 9

Design
case: Yes Yes Yes Yes Yes No No No No No

1,1 0.7% 0.1% 0.2% 1.0% 0.0% 0.4% 0.7% 0.6% 2.0% 2.2%
2,1 2.4% 2.6% 4.2% 1.9% 0.1% 2.0% 3.8% 2.5% 0.6% 1.6%
3,1 3.8% 5.9% 0.9% 2.1% 0.4% 1.5% 1.2% 1.7% 2.2% 1.6%
1,2 5.5% 1.8% 2.3% 49.8% 49.1% 7.8% 10.5% 5.5% 52.4% 9.5%
2,2 1.1% 10.7% 0.6% 4.0% 4.5% 7.7% 7.8% 9.2% 7.3% 9.8%
3,2 2.9% 16.9% 24.0% 9.1% 36.4% 7.3% 28.1% 8.4% 0.6% 19.7%

Table 4. Relative r.m.s. errors in per cent of the mean mode amplitude aij for
DPOD-ANN-ARX estimated mode amplitudes compared to the DPOD mode amplitudes
obtained from CFD simulation. The DPOD model is truncated to 3 × 2 modes for both model
and CFD results.

open-loop actuation simulations, the Reynolds number is fixed at Re = 100. The
second portion of the training data set is comprised of transients in Reynolds number,
while the actuation is kept at zero level. The Reynolds number transient training data
include ramping from Re = 100 to 40, from Re = 100 to 60 and from Re =100 to 160.
These two data sets were concatenated into one hybrid dataset, presented in figure 15.
Along with the 3 × 2 DPOD mode amplitudes, the Reynolds number as well as the
cylinder displacement were provided as inputs to the network. The training procedure
converged after 50 to 150 iterations depending on which mode was being trained. The
comparison between original mode amplitudes and mode amplitudes as estimated by
the model is illustrated in figure 18(a). For the 3 × 2 mode amplitudes, the percentage
estimation error, computed as e = [(RMS Actual − RMS Simulated )/RMS Actual ] × 100, is
presented in table 4. This error definition emphasizes the amplitude error which is
the key parameter for the model to be useful for controller development. It can be
seen that the training data is represented very well by the model (first 5 columns of
table 4), which should not be surprising because nonlinear function approximation
is the very strength of the back-propagation training algorithm. In the next section,
we investigate the validity of the model for off-design cases, which is the true test of
usefulness of the ANN for feedback flow control.

6. Simulation of open-loop and feedback-controlled computations using the
ANN low-dimensional model

The nonlinear ANN-ARX model was developed using five design cases (Cases 1,
4, 5, 8 and 10) for training of the ANN within the lock-in region. Five simulations
not used for model development (2, 3, 6, 7 and 9), shown in figure 8, were used for
validation of the model. The percentage RMS error of the mode amplitude, for the
3 × 2 modes, is presented in table 4. Each case is comprised of 1500 time steps. As seen
in table 4, the validation of the ANN for five different cases within the lock-in region
provided promising results and shows accuracy as well as stability and robustness.

Figure 18(a) shows the CFD based DPOD mode amplitudes in comparison to
the ANN-ARX model estimates for design case 1 and figure 18(b) shows one of the
off-design cases (3). Note the accurate estimation of the mode amplitudes by the ANN-
ARX model when the forcing is switched on and off in a transient fashion. Although
we present only one off-design case, the other cases are qualitatively and quantitatively
similar to case 3 in figure 18(b). As reported by Cohen et al. (2006), attempts made
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at modelling these transients with a linear system identification approach were not
nearly as successful.

Another important model property is robustness against changes in operating
conditions, in our case, the Reynolds number. While the main goal of model
development and training was to obtain a model that accurately represents the
flow changes due to forcing, it is important that the model delivers accurate results
in the vicinity of the design point with respect to Reynolds number. The ANN-
ARX model was also validated for the start up transient behaviour of the shedding
cycles. Figure 17 clearly shows the similarity between a CFD simulation and ANN-
ARX model estimation when increasing the Reynolds number from 40 to 100.
We also ran unforced (actuation amplitude A/D = 0) ANN-ARX simulations at
different Reynolds numbers between 60 and 160 and computed the shedding frequency
obtained from the model and converted them to the Strouhal Number. The results
are presented in figure 16 in comparison to a curve fit to experimental data presented
by Williamson (1996). While not shown, all of the simulations at different Reynolds
numbers developed stable limit cycles with no divergence of the mode amplitudes over
time, demonstrating the long-term stability of the model. The ANN-ARX results show
good agreement with experimental data, even though training of the model was by no
means optimized to obtain accurate results at different Reynolds numbers. This could
be improved upon by adding more transient Reynolds-number data to the training
data ensemble. Also shown in comparison are Galerkin-model results presented by
Noack et al. (2003), obtained with the best published model for the circular cylinder
wake at a Reynolds number of 100, according to our best knowledge. Their models
A and B, which use eight POD modes and eight POD modes plus a shift mode,
respectively, were obtained using a Galerkin projection of the mode amplitudes onto
the Navier–Stokes equations. Model A is equivalent to the benchmark model by
Deane et al. (1991), while model B includes the shift mode developed from the steady
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Figure 17. Mode amplitude comparison between CFD simulation and ANN-ARX model for
Reynolds number transients from Re =40 to 100 of the modes 1,1; 2,1 and 3,1. (a) CFD
simulation, (b) ANN-ARX model simulation. j = 1.

solution of the flow field. It can be seen that the ability of both models A and B to
capture correctly the natural shedding frequency at off-design Reynolds numbers falls
short of the performance of the ANN-ARX-DPOD model developed in this work.

In addition to the open-loop forced validation cases and the off-design Reynolds
number studies presented above, a closed-loop simulation result was used to test
the DPOD-ANN-ARX model’s ability to estimate feedback-controlled cylinder wake
flows. These results have been presented by Siegel, Cohen & McLaughlin (2006). Fig-
ure 19 shows the pertinent results of this CFD simulation in terms of mode amplitudes,
lift, drag and controller phase. The feedback control law was a PD controller with
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Figure 18(a). For caption see next page.

adjustable gains. For all investigations, only displacement of the cylinder in the flow
normal direction was employed for forcing the flow. The control algorithm acts on
amplitude estimates of POD modes, where the POD model in this investigation
included four main modes and a shift mode. These modes are qualitatively similar
to modes i =1, j = 1 – i = 4, j = 1 and the shift mode is similar to mode i = 1,
j =2 as shown in figure 10. This design decision was made based on our earlier
investigations controlling a low-dimensional model of the flow (Cohen et al. 2003).
For the low-dimensional model, proportional gain applied to the first von Kármán
mode was sufficient to suppress vortex shedding. The employed PD feedback control
strategy can be written as

ycyl = Kp a21 + Kd

da21

dt
. (6.1)
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Figure 18. (a) Mode amplitudes aij of the first 3 × 2 DPOD modes for one of the design
cases, forcing with f/f0 = 1 and A/D = 0.25. This data was used for training of the ANN-ARX
network. (b) Mode amplitudes aij of the first 6 DPOD modes for the off-design case 3, forcing
with f/f0 = 105 and A/D = 0.30. This data was not used for training of the ANN-ARX
network. Lines, mode amplitudes from the CFD simulation; dot-dash lines, mode amplitude
estimation from the ANN-ARX model.

Instead of directly specifying the Kp and Kd gains, they can be expressed in terms
of an overall gain K and a phase advance ϕ,

Kp = K cos(ϕ), (6.2a)

Kd =
K sin(ϕ)

2πf
, (6.2b)

where f is the natural vortex-shedding frequency.
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and a21. (e) Instantaneous vorticity contours at t/T = 24.7. (f ) Phase advance during the run.
The controller is activated at t/T = 0 and deactivated at t/T = 27.5.

During the course of the investigations, we found it advantageous to implement
a variable gain strategy. The basic idea is that as the flow field is modified from its
original state, different values for the phase advance ϕ and the gain K may be more
advantageous than those effective in controlling the unforced flow field. Using the
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amplitude difference between the unforced state and the current state, K and ϕ are
written as

K = K0 + KA(a12 − a12|t=0), (6.3a)

ϕ = ϕ0 + Kϕ(a12 − a12|t=0). (6.3a)

Equation (6.3) details the adjustment scheme for the variable gain strategy. Since
mode 12 is a good measure of the change in the mean flow, the feedback gain K and
the phase advance ϕ are adjusted from their initial values K0 and ϕ0 in proportion
to the change in mode i = 1, j =2 by applying a phase advance factor Kϕ and a
gain change factor KA. These additional factors can be either applied together or
individually.

Figure 19, reproduced from Siegel et al. (2006), shows that a drag reduction of
about 15 % of the total drag was achieved, as well as a lowering of the unsteady lift
force by more than 90 %. The controller employed by Siegel et al. (2006) was empirical
in nature, and while model-based estimation of the flow state was a crucial enabling
technology, the adjustment of the linear proportional and differential feedback gains
was based on trial and error rather than on a model-based flow analysis. Nonetheless,
this simulation provides an excellent test case to investigate the use of the low-
dimensional model developed in this work for controller development and testing. In
terms of the DPOD mode amplitudes shown in figure 20(a), it can be seen that the
feedback controller leads to a significant reduction of the fluctuations in the main
modes i =2, j = 1 and i = 3, j =1. Modes i =1, j =1 and i = 1, j = 2 both increase
in amplitude while feedback control is applied, which is consistent with a reduction
in drag. The shift modes i =2, j =2 and i = 3, j = 2, however, show an increase
in fluctuation amplitude, which indicates that the vortex-shedding activity further
downstream, which is represented by these modes, has increased in intensity. One of
the main difficulties in reproducing this simulation using an ANN-ARX model is due
to the use of sensor-based mode estimates in the CFD simulations, which are not
available in identical form from the ANN-ARX model simulation. For this reason,
gains for a new PID controller were empirically developed to use the mode i =2,
j = 1 amplitude directly available from the ANN-ARX simulation for feedback. This
leads to slightly different control gains, but the mode amplitudes obtained from the
ANN-ARX model shown in figure 20(b) were very similar to those of the CFD
closed-loop simulation shown in figure 20(a). The ANN-ARX results show similar
decreases in the fluctuating main modes i = 2, j = 1 and i = 3, j = 1, while the shift
modes of these modes show an increase in fluctuation intensity just as in the CFD
simulations. The PID controller used for the ANN-ARX model operates on the linear
combination of three terms: the proportional term, integral term and derivative term
which can be written as:

y(t) = Kpa21 + Kd

d a21

dt
+ KI

∫
a21 dt . (6.4)

The gains for the ANN-ARX PID controller were determined to be Kp = −0.45,
Kd = −2, KI = −0.1. Figure 21 shows the output of the PID controller which is
directly related to the cylinder position. Although only open-loop and transient start-
up data were used for model development, the model-based estimation of the impact
of feedback control on the flow of this closed-loop simulation is fairly accurate.
This result demonstrates that the DPOD-ANN-ARX model captures the flow
physics correctly, enabling both systematic controller development and performance
evaluation.
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Figure 20(a). For caption see next page.

7. Conclusions
One of the big challenges in feedback flow control is the development of robust,

numerically stable low-dimensional models. In this paper, a structured approach is
developed to obtain a low-dimensional dynamic model for a laminar absolutely and
globally unstable cylinder wake flow at a Reynolds number of Re =100. Two-
dimensional CFD simulations were performed for the onset of the limit cycle
oscillation, as well as various open-loop periodically forced cases. Forcing was
implemented as translation of the cylinder normal to the flow. Data from all
of these transient simulations were analysed using short-term proper orthogonal
decomposition (SPOD) of each individual shedding cycle, using the unsteady lift
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Figure 20. (a) Closed-loop simulation of first 6 DPOD modes (aij ) using CFD simulation.
Mode a(2, 1) fed back through a PD controller. The P and D gains were adjusted according
to mode a(1, 1) amplitude. (b) Closed-loop simulation of 6 DPOD mode (aij) with the
2 × 3 DPOD ANN-ARX model. Mode a(2, 1) fed back through PID controller to create a
closed-loop simulation. Although no closed-loop data were used to train the network, mode
amplitudes qualitatively match CFD closed-loop simulations in (a).

force to segment the data sets into individual shedding cycles. These short-term POD
spatial modes were then subjected to a second POD decomposition to obtain an
energy optimal representation of each main mode and one or more ‘shift modes’
representing its change over time. By projecting the original data sets onto this spatial
basis of DPOD modes, we obtained the mode amplitudes. A reconstruction of the
flow field and comparison to the original CFD data demonstrates the ability of the
obtained DPOD basis to span the entire subspace from the unforced wake through
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Figure 21. PID controller output of ANN-ARX closed-loop simulation. The PID controller
gains are: Kp = −0.45, KI = −0.1, KD = −2. This is also the cylinder displacement y(t).

the transient onset of vortex shedding to the open-loop forced flow conditions. Based
on energy and modelling-error considerations, we truncate the DPOD basis to 5 main
and 3 shift modes. The mode amplitudes obtained for the 15 DPOD modes are then
used as input for nonlinear system identification.

A nonlinear ANN-ARX model was developed using a composite data set consisting
of the transient development of the limit cycle as well as one open-loop forced
simulation as design cases for training of the ANN within the lock-in region. The
validation of the ANN for five different cases within the lock-in region provided
promising results and shows accuracy as well as stability and robustness.

It is worth noting that the approach presented here is free of any assumption
about the mathematical form of the equations that describe the dynamics of the
flow. While it is possible to make reasonable mathematical assumptions based on
first principles for relatively simple flow fields such as the cylinder wake at low
Reynolds numbers, it is difficult, if not impossible, to deduce accurate equations for
more complex flows. However, it is the latter class of flows which is of greatest
technical interest. The approach presented here can be applied to more complex flow
fields without any modifications, since it is data driven and devoid of simplifying
assumptions concerning the form of the equations. This will enable the derivation
of low-dimensional models for flow fields that have so far been out of reach of
current modelling techniques. As long as enough transient flow-field data is available,
a low-dimensional DPOD-ANN-ARX model can be derived that spans the range of
flow conditions from which data were used for model development. We have shown
a model that covers the open-loop and feedback-controlled flow states within the
lock-in region at one set Reynolds number. We also demonstrate that by including
data from a simulation increasing the Reynolds number smoothly from 40 to 100,
the flow at Reynolds numbers within that range is modelled correctly. Thus, we
have demonstrated that our model spans two parameters, namely forcing input with
amplitude and frequency, and Reynolds number, within the range of training data
used. It is possible to extend the range of validity by adding more training data for
different Reynolds numbers or forcing conditions. By adding additional inputs to the
model, the DPOD-ANN-ARX technique can be extended to model flow behaviour
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that depends on additional parameters, for example multiple actuators. Since the
entire modelling procedure does not depend on the details of the source data (e.g.
the numerical grid or boundary conditions), it should be possible to adapt it to more
complex flow geometries without modifications.

The approach presented here is a systematic procedure involving transient data
collection, followed by derivation of DPOD modes that are accurate for all of the
underlying flow states. The mode amplitudes are then used to train an artificial
neural network using system identification methods. The resulting network is static
and represents the flow dynamics for all transient flow states used in its derivation.
The resulting model is small in numerical terms and cost efficient to solve, enabling
real-time implementation for feedback control.

8. Outlook
So far we have demonstrated the applicability of our modelling approach to the

benchmark problem of a two-dimensional circular cylinder wake at a Reynolds
number of 100. At one reviewer’s request we discuss in this section the applicability
of the method to more complex flows. While we aim to avoid unsupported speculation
as much as possible, we find it beneficial to share some insight we have gained into
this issue from preliminary investigations.

The circular cylinder wake at Re =100 is not an entirely two-dimensional flow, as
has been shown in the literature for example by Williamson (1996) for the unforced
wake, or by Seidel et al. (2006) for the feedback-controlled wake. The latter investiga-
tion demonstrates how feedback control can cause a spanwise phase shift of the vortex
shedding until the two-dimensional-control approach is effective only in the narrow
vicinity of the two-dimensional sensing plane that was used in this investigation. This
poses the question of whether the DPOD-ANN-ARX approach can be extended to
three-dimensional flows. The answer is an unequivocal yes, since there is no limitation
of the DPOD decomposition to two dimensions, as was pointed out in § 3.

As the Reynolds number of the circular cylinder flow is increased beyond Re ∼ 180,
secondary instabilities lead to the formation of streamwise vortices (Williamson 1996).
While modelling these flow features will lead to additional DPOD modes, there is
no apparent obstacle to applying POD-based modelling to flow fields that contain
both two- and three-dimensional features, as has been shown in the hybrid approach
proposed by Ma & Karniadakis (2002). Extending their work to use the DPOD
procedure introduced here, we could derive dynamic models capturing the effect of
actuation and/or changes in Reynolds number for these types of flow. This could
then be used to develop feedback controllers to suppress the von Kármán type vortex
shedding. Based on results of Cohen et al. (2003), where feedback of the von Kármán
mode suppressed only higher-order harmonic modes, there is hope that suppressing
the Kármán vortex street might eliminate the streamwise vortices as well, since they
are the result of a secondary instability that exists only in the presence of the von
Kármán vortex shedding. Whether this conjecture is in fact true remains to be shown.

At yet higher Reynolds numbers (Re > 3900), the von Kármán vortices break down
into smaller and smaller turbulent structures that ultimately dissipate their energy
into heat. These smaller structures can be quite energetic and thus more and more
POD modes must be retained in order to model a given fraction of the overall
flow energy content. This behaviour of POD is due to the energy optimality of the
procedure, and DPOD inherits this property from POD. As a result, both POD
and DPOD models will become inherently large for flows that break down into
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turbulence. If the purpose of model development is feedback control, however, there
may not be a need to model the small turbulent eddies in order to capture the
dynamic behaviour of the large vortical structures. In the case of the circular cylinder
wake, we may be interested only in modelling the von Kármán type shedding for
the reasons outlined in the previous paragraph. Thus, an approach where the flow
data is subjected to either spatial or temporal filtering may be applied, as has been
pursued with good preliminary results (Siegel et al. 2007). The approach proposed in
this work removes small-scale turbulent structures from the data used for POD mode
derivation while retaining the large structures (i.e. von Kármán vortices) that are of
interest for feedback-controller development. This approach is much like the use of
spatial filtering in large-eddy simulations employed in state-of-the-art CFD solvers.
With this approach, we introduce a choice of how much or how little of the smaller
structures are included in the model. Thus, we can derive models with relatively
few modes that nonetheless capture the dynamics of the flow that is relevant for
feedback control. The DPOD-ANN-ARX approach is particularly suited to this type
of modelling, since no turbulence model is required. As the entire model development
is data driven and does not include projection onto the Navier–Stokes equations, no
closure equations are required. The approach can thus be used as introduced here,
with the only added step being a filtering process before the derivation of the DPOD
modes. However, more detailed investigations into filter kernel type, size and cutoff
wavelength are needed.

An important question pertaining to the application of DPOD to flow fields with
multiple equally dominant frequencies is the selection of appropriate bin boundaries.
In the present investigation, higher-frequency content was small in amplitude
compared to the fundamental frequency of the vortex shedding, and thus the lift force
with a simple peak detection algorithm was suitable for bin segmentation, as shown in
figure 3. If several dominant frequencies coexist, there are different possible approaches
to segmentation. Using a phase accurate temporal notch filter as a pre-processing step,
we may recover the fundamental frequency and determine bin boundaries in the same
fashion as introduced in this work. Alternatively, it is conceivable to use open-loop
forcing to elevate the amplitude of one of the dominant frequencies at a time, thus
allowing for discovery of the spatial flow features related to each frequency using
multiple SPOD procedures, one for each of the frequencies of interest.

Having outlined possible pathways of how the DPOD-ANN-ARX approach may
be applied and extended to flow fields at Reynolds numbers of technical interest, the
question remains as to how applicable this approach may be to other flow geometries.
We consider the circular cylinder wake as a prototype flow featuring separated free
shear layers that develop instabilities leading to vortex shedding. As such, there are
similarities to many other flows of technical interest that contain free shear layers,
featuring both simpler and more complex flow behaviour. Examples that we have
investigated are the separated flow over a stalled airfoil, free shear layers formed
behind a D shaped cylinder, and the wake of an axisymmetric bluff body. Although
we have yet to apply the DPOD-ANN-ARX approach to these flows, we consider
them promising candidates since they all feature large coherent structures resulting
from instabilities. The interaction of these instabilities and their resulting structures
with flow actuators of various kinds is of great technical interest, both for open- and
closed-loop flow control. DPOD-ANN-ARX models may be used to investigate this
interaction in a structured and quantitative fashion.

In summary, we developed this approach with the intent to use the resulting
models for controller development in order to achieve control of the formation
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of large structures caused by flow instabilities. From a technical perspective, these
types of flow are the most promising candidates for feedback flow control since
instabilities can be influenced with relatively small amounts of actuation energy.
This is important in the context of the power limitations inherent in state-of-the-art
dynamic flow actuators. Our approach supports flow fields with many different modes
present, and can also accommodate multiple actuator interaction allowing for MIMO
control. We did not intend it to be used for random turbulent flows, but find that
there are many technical applications where this limitation is of no importance.
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